Call us on
If you have any questions, please contact us
GO >>
Home > News > Content

PSA Technology Air Separation

Switching from bottled or liquid nitrogen to a pressure swing adsorption (PSA) system as a way to source pure nitrogen (N2) can result in energy and cost savings, as well as reduced CO2 emissions when compared to the conventional air separation process of fractional distillation. 

Large air separation plants use fractional distillation of air to generate nitrogen. This is energy intensive because the ambient air must first be condensed into liquid air by cooling and compressing it.  The separated nitrogen must then be purified to the desired level (discussed in Part 1 of this series). Next, the nitrogen is transported to the location where it will be used.  Then, the empty tanks must be transported back to the production facility to be refilled.  Transportation of the tanks uses a significant amount of energy, which is expensive.  Because the process of generating nitrogen is performed on a continuous, large scale basis, large amounts of CO2 emissions are released. CO2 is believed to be a greenhouse gas with a significant unfavorable impact on worldwide climate change.

A PSA system on the other hand, produces nitrogen at room temperature using house compressed air which requires less energy. Additionally, a generator operates on premises, meaning there is no transportation involved.

A PSA nitrogen generation system separates nitrogen from oxygen based on the preferential adsorbtion and desorption of oxygen and other contaminants on carbon molecular sieve. Pressurized air is passed through a vessel filled with carbon molecular sieve that adsorbs oxygen while the nitrogen passes through the vessel. Once the molecular sieve is saturated with oxygen, the pressure is lowered and the contaminants  which have been trapped (including oxygen, CO2 , and water vapor) are released to atmosphere. Carbon molecular sieve has a high degree of microporosity making it ideal for oxygen adsorption. To obtain a continuous flow of N2 and maximize system utility, two vessels are connected in parallel, so that one vessel is providing nitrogen to the system while the other vessel is being regenerated.

PSA systems offer many of the same benefits as hollow fiber membrane systems (discussed in Part 2 of this series) including an uninterrupted nitrogen supply, consistent purity, reduced costs, and freedom from dependence on outside vendors. Generally, a PSA system would be used over a membrane system when the application requires higher purities (>99%).


Previous: No Information

Next: Nitrogen Membrane Systems

Product Categories
To learn more, please click into each category ...
Copy Right Reserved YDGET